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Abstract

The use of image patches to capture local correlations
between pixels has been growing in popularity for use in
various low-level vision tasks. There is a trade-off between
using larger patches to obtain additional high-order statis-
tics and smaller patches to capture only the elemental fea-
tures of the image. Previous work has leveraged short-
range correlations between patches that share pixel val-
ues for use in patch matching. In this paper, long-range
correlations between patches are introduced, where rela-
tions between patches that do not necessarily share pixels
are learnt. Such correlations arise as an inherent prop-
erty of the data itself. These long-range patch correlations
are shown to be particularly important for video sequences
where the patches have an additional time dimension, with
correlation links in both space and time. We illustrate the
power of our model on tasks such as multiple object reg-
istration and detection and missing data interpolation, in-
cluding a difficult task of photograph relighting, where a
single photograph is assumed to be the only observed part
of a 3D volume whose two coordinates are the image x and
y coordinates and the third coordinate is the illumination
angle θ. We show that in some cases, the long-range cor-
relations observed among the mappings of different volume
patches in a small training set are sufficient to infer the pos-
sible complex intensity changes in a new photograph due to
illumination angle variation.

1. Introduction

Patches have been used to capture local correlations be-
tween pixels in various low-level vision tasks, with per-
haps the most notable early example in [6]. To capture
correlations that span a longer range, larger patches can
be used, though this has adverse side-effects, including for
example, increased difficulty in patch matching. When
multiple patches from different images are matched there
are many correlations between the mapping pairs. If two
patches match in two images, then it is likely that shifting
both patches one pixel in the same direction also leads to
a matched pair, since there is a significant amount of over-
lap between the pixels in the patches. Such local coherence
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Figure 1. The epitome of three car images learnt using long-
range patch correlations. The epitome ends up being a merge
of the three cars, with both the front and back of the car reach-
ing a compromise between the different shapes of the cars. Also
interesting to note is how the epitome merges the three back-
grounds. The patch indicated by Si in the top-left image is con-
nected to several other randomly chosen patches in the image,
to which, relative patch distances should be generally maintained
during patch matching to the epitome. The corresponding patch
in the epitome is shown as Ti and the matching is constrained
by the matches for the patches connected to Si. A video illus-
trating this patch correspondence during learning is available at
http://www.psi.toronto.edu/∼vincent/patchcorr.html.

ideas have been used in [1, 13]. In case of videos and 3D
patches, local correlations are even stronger because of the
added time dimension.

Visual data also exhibits strong long range correlations in
images which can relate patches that do not have any pixels
in common. Elastic matching, e.g. [2], has been used in the
past to register image pairs by leveraging the fact that map-
pings are generally smooth between images to overcome er-
roneous correspondences due to noise or lack of identifying
features. By reducing the analysis to a subset of patches
with relatively high mutual distances, it is possible to pro-
duce elastic matching of large structures using a small num-
ber of image features. This is achieved by assuming that
relative offsets of image features are only slightly perturbed
between two images. Relative positions of features are also
useful for object recognition. For example, in constellation
models [3, 12], the relative locations of a small number of
detected features from an image are used to facilitate object
recognition. Elastic image matching, which only some of



its many forms have been mentioned here, has been one of
the most used tools in vision.

In this paper, we are concerned with the use of similar
elastic constraints, but with the goal of modeling correla-
tions among the mappings of all data patches to a common
learned representation of a category of images (Fig. 1), e.g.
an epitome [4, 8, 10]. Thus, the model we propose captures
the full probability distribution of the data, making it pos-
sible to mine the long-range image correlations in various
inference tasks, including data registration, data likelihood
computation (for tasks such as classification or detection),
and missing data interpolation.

For example, one of the tasks we can perform using
inference in our model is the simulation of illumination
changes on an object in a single photograph. The illumina-
tion training data consists of video sequences of other static
objects and varying illumination angles, and the patches
mapped to a common epitome are three-dimensional. Our
model estimates the appearance and mapping constraints
through space and time among the video cubes in the train-
ing data and then estimates a video sequence which satis-
fies these constraints and whose central frame is equal to
the given photograph. This creates plausible illumination
changes on the object in the photograph.

Previously, such image relighting tasks typically re-
quired an expensive, brute force, hardware solution as in
[5], where the subject sits in a dome and photos of the sub-
ject are taken from many different angles, from which any
illumination can be reconstructed by taking combinations of
these images. There are several limitations to this approach
including the a priori knowledge of the desired illumination
change, so deceased individuals cannot be re-lit; the sub-
ject must remain still and be tolerant to strobe lights; and
the subject must fit in the dome, so entire scenes cannot
be re-lit. Less hardware-dependent and more computation-
oriented alternatives to re-lighting an image or video se-
quence have also proposed. For instance, generic face sur-
face geometry and reflectance models have been used for re-
lighting faces [11,14]. However, once the problem changes
to re-lighting something other than a human face, such as an
animal, a piece of cloth, or an entire scene, these approaches
become more difficult to follow, as they need object-specific
surface geometry models. With the exception of a small
number of object categories (perhaps only human faces),
such models are fairly rare. The richness of the 3-D face
modeling literature is the best indication of the difficulty of
acquiring such models. The examples of relighting we show
in this paper are example-based - given a small number of
examples (sometimes even just one) of how the image of
an object changes with smooth variation of illumination an-
gles, we can construct plausible similar changes on another
similar object. This removes the need for full modeling of
the surface geometry of the objects. Instead, the correla-
tions in the patches form the training data provide sufficient
constraints to infer plausible image changes due to illumi-
nation angle changes.

In addition to face and cloth photograph-relighting, we
show results on simulating a walk through a hallway given

one photograph of a hallway, and learning epitomes of
cars and faces, all using the same trainable model of data
patches.

2. Flexible patch configurations

As discussed in the introduction, the issue of varying
geometric configurations of object features has repeatedly
been encountered in vision research. In this paper we are
particularly concerned with how this variability can be ac-
counted for in patch models that describe learnable prob-
ability density functions of images. In particular, as de-
scribed in Fig. 1, we construct an epitome model in which
patches from different locations in the image have corre-
lated mappings to the epitome locations. While the discus-
sion in this section is limited to 2-D images for concrete-
ness, it is trivial to extend these ideas to N-D structures.

2.1. Review of epitome models

The original epitome model [8] proposes that a set of
pixels from image z with indices in the set S, i.e., the set
zS = {zu|u ∈ S}1, can be described by specific individual
probability distributions taken from epitome (e) locations in
the set T :

p(zS |eT ) =
∏

k

p(zS(k)|eT (k)), (1)

or simply,

p(zS |eT ) =
∏

k

eT (k)(zS(k)), (2)

where it is assumed that the sets S and T are ordered and
of equal sizes, and the k-th index in one set corresponds to
the k-th index in the other. Given a number of these cor-
respondences between different subsets of pixels in train-
ing images Si and subsets of epitome locations Ti, learning
an optimal epitome reduces to assembling the required suf-
ficient statistics. For example, if the distributions at each
epitome location eu are Gaussians, p(zv|eu) = eu(zv) =
N (zv; µu, σ2

u), then the mean µu of the Gaussian at epit-
ome location u is simply equal to the average of all image
pixels that map there,

µu =

∑

i

∑

k[u = Ti(k)]zSi(k)
∑

i

∑

k[u = Ti(k)]
, (3)

where [ ] is Iverson’s indicator function, i.e., [true] = 1,
[false] = 0. When the correspondences are not given, but
the nature of these correspondences is described so as to
limit the possibilities2, the mapping for each set S can be

1Boldcase u and v represent 2D indices describing image coordinates,
i.e., u = (x, y)

2For example, one way to limit the space of allowed correspondence is
to consider subsets Si in the data that are rectangular patches of a certain
size, i.e., Si = {u = (x, y)|Xi ≤ x < Xi + δ, Yi ≤ y < Yi + δ}
and the corresponding epitome subsets T are defined to also be rectangular
patches starting at some epitome location Xj , Yj .



inferred using an early estimate of the epitome, which leads
to soft posterior mapping of image subsets Si to the corre-
sponding epitome subsets Ti,

q(Ti = T ) = p(Ti = T |Si, z) ∝ p(zSi
|eT )p(T ), (4)

where p(T ) is the a priori probability that epitome patch T
is used to describe any of the data, and the posterior distri-
bution is established by normalizing the above expression
over all possible sets T .

The epitome is then re-estimated using this soft mapping.
For example, in case of Gaussian epitome entries, the means
are estimated as weighted average of all pixels, with the
weights defined by mapping probabilities. Since each set of
image coordinatesSi may map to any set of epitome coordi-
nates T , with probability q(Ti = T ), the sufficient statistics
reflect this by weighting with these probabilities [8],

µu =

∑

i

∑

T q(Ti = T )
∑

k[u = T (k)]zSi(k)
∑

i

∑

T q(Ti = T )
∑

k[u = T (k)]
. (5)

The variance σ2
u at each location is estimated in a similar

fashion [8].
Iterating mapping inference and epitome re-estimation

leads to joint epitome learning and data registration [8]. The
learning procedure quilts and averages patches from vari-
ous locations from one or more images to create a compact
model of all patches, similar to [6]. The model can easily
be used for ordered data of different dimensionalities than
two, e.g. 3D epitomes were used to model videos [4], and
1D epitomes were used to estimate an HIV vaccine [9].

The rules of establishing pixel correspondence (choos-
ing various image locations S and their corresponding epit-
ome locations T ) are left general in these early papers,
although particular applications usually considered regular
small patches of image pixels to form various sets Si, and
the same size patches in the epitome. This made the search
for optimal mapping of each image patch linear in the size
of the epitome, as effectively, only the position of the epit-
ome patch is required to fully describe the mapping regard-
less of the patch size. This choice also limited the spatial ex-
tent in which image correlations are nicely captured by the
epitome to several patch sizes. Due to the overlap of patches
both in the input image(s) and in the epitome, the textures
that form in the epitome upon learning capture structures
larger than the patch sizes, but often much smaller than the
object size.

The basic formulation of the model allows the pixel coor-
dinates in Si to come from disconnected parts of the image,
and the mapping rules that limit the space of possible sets
of epitome coordinates T to include rotation, shearing, and
other transformations. This would allow capturing more
complex geometric changes that span a larger spatial extent
in the image. To the best of our knowledge, while the inclu-
sion of more sophisticated geometric transformations has
been studied before, the use of non-contiguous patches has
not been investigated due to the explosion of the numbers
of possible image subsets Si to be considered. Recently,
patches of arbitrary (and inferred) shape have been used in
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Figure 2. Factor graph of the long-range correlations patch model.

epitome structures dubbed jigsaws [10], but these patches
are still contiguous and do not capture global correlations
in images. Without directly capturing longer range corre-
lations in the data, be it images, videos, or other ordered
datasets, the epitome models will fail to capture global scale
phenomena of the objects they were trained on.

To resolve this problem, instead of using non-contiguous
patches to capture within each single mapping, S → T ,
the correlations in distant parts of the image, we propose
to model correlations among different mappings, S i → Ti.
This allows us to capture long-range correlations in the im-
age while still having relatively simple individual patches
and mappings.

2.2. The mapping field

The use of simple rectangular patches to represent data
has significant computational advantages, especially for
higher dimensional data, as discussed, for example, in [4].
Rectangular patches allow the use of fast Fourier transform
tricks and efficient image correlation computations neces-
sary to efficiently perform otherwise very expensive com-
putations. Smaller patches of other shapes can be simulated
using the masking variables [8], or, with a higher compu-
tational cost, but some other benefits, using jigsaw mod-
els [10]. Different patches of data coordinates S i have the
associated mapped epitome coordinates Ti. The original
epitome model assumed independence of variables T i, as
the patch overlap naturally enforced the appropriate agree-
ments in mappings of nearby patches. Similar local agree-
ment is enforced in the jigsaw model in a way that allows
patches to be arbitrarily shaped.

In the model we propose in this paper, we capture the
constraints on the mappings Ti and Tj of distant patches Si

and Sj through agreement factors gi,j = g(Ti, Tj ,Si,Sj)
(Fig. 2), which have high value if the mappings T i, Tj

keep a similar geometric configuration as Si, Sj . The fac-
tors hi correspond to the usual epitome likelihoods e.g.
hi = eTi

(Si). Intuitively, this is represented in Fig. 1, where
the patches connected to Si constrain its matching to Ti as
it is desirable not only for the two patches to be similar,
but also to maintain the relative locations of the matching
patches. The likelihood of the entire image is proportional
to the product of all factors (only some of which are shown
in Fig. 2),

p(zS1 , zS2 , ..., zSI
) ∝

I
∏

i=1

hi

∏

j∈Ni

gi,j , (6)



where I is the total number of image patches considered,
and Ni represents the set of data patches j connected to
patch i in the model. While this set can be arbitrary for
each patch i, in our experiments we chose a particular (but
randomly chosen) relative configuration and use it for all
patches in the image.

There is a number of ways to parameterize the relative
geometric configuration of the patches, and some alterna-
tives we have not tested will be discussed later, but first, we
go over the choice of factors g and long-range interaction
neighborhoods N in our experiments. The basic property
that factors g are enforcing is that the relative positions of
the coordinates in Si, Sj are preserved in the mappings Ti,

Tj , i.e., Si(k) − Sj(k) ≈ Ti(k) − Tj(k)3. If each patch is

kept rectangular, this is equivalent to S̄i − S̄j ≈ T̄i − T̄j ,
where bar denotes taking the mean of the coordinates in
the set, since ΔS = Si(k) − Sj(k) is constant for all el-
ements, and the same is true for ΔT . If the mapping in-
ference enforces a preference to keeping the relative po-
sitions of the chosen patches, the epitomes would reflect
longer-range correlations in images. However, the images
often undergo geometric deformations due to angle of view
changes and object deformations, which can violate some
of these constraints, and to account for that, we can allow
for different variances on the Gaussians that enforce them,
gi,j = N (T̄i −T̄j; S̄i −S̄j,Φi,j). In this way, the mappings
Sj → Tj for the neighbors of Si, i.e., j ∈ Ni will effect the
mapping Si → Ti.

In our experiments, the neighborhood N i consists of K
patch (rather than pixel) indices (usually 10-20). There are
roughly as many different rectangular patches as there are
pixels in the image, since the patch can be centered at any
pixel except those close to image boundaries. Thus patches
can be indexed by their central pixels. To choose a neigh-
borhood for each patch S i, where i now represents a 2-D
coordinate of the central pixel, we first choose K random
2-D offsets ∆k up to some maximal distance d (e.g. half or
quarter of the image size), i.e., ||∆k|| ≤ d for all k, and
define Ni as an ordered set with Ni(k) = i + ∆k. In other
words, to construct the field of mapping constraints, each
patch i is connected to interacting neighbors in the same
relative configuration, but the mapped epitome patches T j,
j ∈ Ni may not follow fixed configurations due to the un-
certainty captured in the 2-D covariance matrix Φ i,j in the
Gaussians gi,j .

The K Gaussians gi,j for some i should have linked pa-
rameters, since they should all depend on the local deforma-
tion at i. Furthermore, the assumption S̄i − S̄j ≈ T̄i − T̄j is
too rigid, both because the possible squishing of the texture
in the epitome and because of the local image foreshorten-
ing and object deformations due to viewing angle changes
and other effects. To account for this, we introduce a hidden

3While this could be achieved by simply merging the patches Si and Sj

into one non-contiguous patch Sand imposing constraints on the epitome
mapping T , the patches in the epitome may no longer have a fixed shape,
thus making it impossible to use cumulative sum and other computational
tricks to perform efficient computation of the patch likelihoods hi for all
possible patches Ti.

transformation Ai which affects each of the patch links, i.e.,
factors gi,j ,

gi,j = N (T̄i − T̄j ; Ai(S̄i − S̄j),Φi,j). (7)

In our experiments this transformation is linear and thus A i

is a matrix. The prior on this matrix can be included so as
to prefer identity (not shown in Fig. 2). When, as in our
experiments, each patch is connected to a large number of
interacting neighbors (Ni contains a sufficiently large num-
ber of patches), Ai is inferrable. In our experiments we link
parameters Φi,j for different patches,

Φm,Nm(k) = Φn,Nn(k) = Φk. (8)

In other words the links in the same relative configuration
(the same ∆k) share the same covariance structure. This
allows learning the relative extent of the image correlations
– the links that tend to lead to low correlation (e.g. because
they reach to far in some direction) will simply have high
variance captured in Φk.

As in some previous patch models, to account for image
intensity changes (darkening or brightening of the patches,
for example), we add two scalar hidden variables a, b that
control the patch contrast in the factors hi:

hi = eTi
(aizSi

+ bi). (9)

3. Mapping inference

Next we discuss inference in the epitome model with
long-range patch correlations defined by (6), (7), (8) and
(9). This model is a Markov random field (but unlike in
most vision applications with more frequent and further-
reaching links), with the epitome as the representation of
the observation likelihoods. A number of techniques for in-
ference in MRFs have been studied in the past, and most
of them can be adopted here, including sampling, loopy
belief propagation, and variational techniques (for review
and some comparisons of probabilistic inference techniques
see [7]). We have experimented with a simple variational
technique4, which factorizes the posterior distribution as
Q =

∏

i q(Ai)q(ai, bi|Ti)q(Ti) and further assumes that
q(ai, bi|Ti) and q(Ai) are delta functions. The resulting up-
date rules are:

q(Ti) ∝ h̃i(Ti)
∑

Tj |j∈Ni

∏

j∈Ni

q(Tj)gi,j(Ti, Tj , Ãi),

h̃i(Ti) = argmax
a,b

hi(Ti, a, b), (10)

Ãi = argmax
Ai

∑

Ti

q(Ti)

∑

Tj|j∈Ni

∏

j∈Ni

q(Tj)gi,j(Ti, Tj , Ãi).

These equations do not update the belief q(T i) about where
each patch Si should map only according to the epitome

4Due to a large number of links, belief propagation yields essentially
equivalent messages.



likelihoods for different possible patches Ti as in (4). In-
stead they take into account the probable mappings of the
patches in Ni to skew the inference so as to have these
patches in the proper geometric configuration with T i. Us-
ing the best matching contrast parameters a,b also allows the
inference to be somewhat invariant to illumination changes.

Finally, Ãi captures shearing of the image as it affects patch
Si. Depending on the strength of the links defined by Φk,
whose learning is discussed in the appendix, this shearing
may be only local or more global.

Note that the epitome e involved in computation of h i

can either be learned or preset. For instance, in Fig. 5 we
simply use an example of a video which we feel sufficiently
epitomizes the class of data of interest and define the mean
of the epitome e to be equal to that video, and use a small
uniform value for all epitome variance. Then, the inference
rules above, when iterated can be used to map other videos
to it. To also learn the epitome from data, the original up-
date rules, e.g. (5), only need to be changed slightly to ac-
count for the contrast variables (see the appendix). As in
the previous work, the epitome update is iterated with the
inference equations above.

4. Interpolating missing data

In (6) we model a selection of data patches. In our ex-
periments, the image patches we considered are all image
or video patches of a certain size. In many applications, a
model of individual pixels is required, and the fact that each
pixel belongs to several patches needs to be resolved. We
follow the recipe from [8] and [4] – the patches zS are in a
hidden image, while the observed image, at each pixel con-
tains the average of appropriate pixels in all patches zS that
overlap it. The patch agreements are enforced in the infer-
ence distribution, rather than in the model. In our case, to
the factors h and g described above, we add an extra factor
fu per pixel xu of the observed image x,

fu = N (xu;

∑

i

∑

k[u = Si(k)]zSi(k)
∑

i

∑

k[u = Si(k)]
, ρ2

u), (11)

with the total image likelihood proportional to

p(x) ∝
(

∏

u

fu

)(

∏

i

hi

∏

j

gi,j

)

. (12)

The variational posterior is factorized as Q =
∏

u q(zu)
∏

i q(Ai)q(ai, bi|Ti)q(Ti), with a single part
of the posterior q(zu) = δ(zu − νu) for each particular
pixel zu in the hidden image, regardless of how many
patches zSi

it may be in. This enforces the agreement
of overlapping patches in the posterior distribution over
all hidden variables. The posterior, as well as model
parameters are estimated by minimizing the free energy

F =
∑

hiddens

Q log

(
∏

u fu

)(
∏

i hi

∏

j gi,j

)

Q
. (13)

Not only does the model describe the likelihood 5 of image
pixels rather than patches (still capturing a number of pixel
correlations), but it also makes possible the inference of hid-
den pixels zu. Inferring these hidden pixels has various ap-
plications such as denoising and superresolution as in [4],
which are all achieved by setting some of the variances ρ2

u

to large values. However, the inference procedure in our
model will involve enforcing long-range correlations in the
image. While this property should be helpful in previous ap-
plications of patch models, even more ambitious tasks can
be attempted – the ones for which accounting for long range
correlations in the data is crucial. Some of these tasks will
be illustrated in the experimental section.

The inference of the hidden image pixels zu reduces to
estimation of parameters νu:

νu =

xu

ρ2
u

+
∑

i,k|Si(k)=u q(Ti)
µTi(k)

σ2
Ti(k)

1
ρ2
u

+
∑

i,k|Si(k)=u q(Ti)
1

σ2
Ti(k)

, (14)

which balances the votes from different epitome patches
with the observed value for the pixel based on the ratio of
appropriate noise or uncertainty parameters (variances σ 2

for epitome ‘votes’ and ρ2 for the votes from the observed
image), as well as the uncertainties about mapping q(T i).
The other update rules (10) remain the same, except that
instead of patches zSi

, patches of variational hidden image
means νSi

are used to compute hi.
We have performed a number of experiments on haluci-

nating plausible guesses for large chunks of missing data,
by setting variances ρ2

u for the missing data to high values.
For instance, in one of the experiments, the data x is as-
sumed to be a video of a hallway walk-through (with all the
motion due to the cameraman’s walking), but only a single
frame is given. In this case, the coordinates u = (x, y, t)
are 3D, the patches Si are all video cubes of a certain size,
and the variances ρ2

x,y,t are set to a high value everywhere
except when t = 0, where it is set to a small value, thus
overpowering the epitome predictions. For the epitome e we
simply used a sequence of a walk-through of another hall-
way to be its mean, and set the epitome variances to a same
small value everywhere (training the epitome on a larger
number of such sequences would probably lead to better
results), and then iteratively applied equations (10,14) un-
til convergence. After each application of these equations,
the inferred video ν resembles the original video which we
used as an epitome more an more, both in terms of the lo-
cal video texture resulting from quilting patches eT and in
terms of how the quilting of such patches in one part of
the video volume influences the choice of the patches in
another, distant, part of the volume. Thus, the resulting se-
quence νx,y,t contains the given photograph as its frame 0,

since the low variances ρ2
x,y,t=0 require it, but from t = −7

to t = 7 it adds new frames that agree with frame 0 so that

5Strictly speaking, the model is not normalized because of the factors
g, but the same inference procedures can still be used; the imbalance due
to g factors is uniformly distributed over the data, due to the fixed relative
configuration of the neighborhoods Ni



the sequence contains the motion of the hall’s walls out of
the field of view, zooming motion of the texture close to
the center of the field of view, as well as the same rocking
motion of the human walk, present in the epitomic example.

In another experiment, the data and epitome coordinates
are x, y, θ, where θ is a illumination angle, and the same
procedure is used to perform single-example photograph re-
lighting. Due to complex long-range correlations in these
two types of data, inference of missing data using traditional
patch quilting would be impossible.

5. Experiments

5.1. Epitome learning

In the original image epitome, a variety of patch sizes
could be used during learning. Using large patches it is
possible to capture large features, but because larger im-
age structures also undergo larger deformations, the use of
large patches also introduces significant amount of blurring.
Small patches, on the other hand can capture repeating de-
tails that are easier to register, but the epitomes tend to have
smaller structures and more discontinuities. When learn-
ing epitomes with long-range patch correlations, it is possi-
ble to capture large image structures using smaller patches,
and thus achieve sharper epitomes and higher epitome like-
lihoods. The large epitome structures are the result of a
combination of the global correlations provided by the map-
ping field we introduce in this paper, and the local correla-
tions provided simply by patch overlaps, as in the original
epitome.

The epitome shown in Fig. 1 was learnt from just three
images of cars. The mean of the three images was used to
initialize the epitome and after learning, the resulting epit-
ome is a morph of the three cars. No alignment of the im-
ages was done beforehand. The long-range patch correla-
tions caused the patches from these three cars to essentially
agree upon an alignment of their features. The car images
and the epitome all have a resolution of 120x90 pixels, and
patches of size 10x10 with 10 random correlation links were
used during learning. An example of these patch correla-
tion links is outlined on top of the image on the left. The
patch, Si is randomly linked to a couple other patches, such
that their corresponding epitome mappings T i keep a similar
spatial configuration. Fig. 3 illustrates the impact of long-
range patch correlations in learning the epitome. The face
epitome from [8] is shown on the left. Continuing the learn-
ing procedure for just a few more iterations, but including
the constraints g on patch mappings by iterating (10, 17),
results in the epitome on the right. The contiguous features
in the new epitome are significantly larger, with a prototyp-
ical sharp face emerging near the center that does not look
like any one single face in the database.

We can also examine where patches in an image match in
the epitome. With the patch correlation constraints, we ex-
pect patches of a human face to match to contiguous areas of
the epitome, as opposed to patches scattered all around the
epitome. But, when a non-human face is matched with the
epitome, we expect constraints to be violated and patches

Figure 3. The effect of long-range patch correlations in learning
the epitome. Starting with a traditional epitome on the left, con-
ducting a few iterations of learning with patch correlations leads to
the epitome on the right, which starts to show larger image struc-
tures, including a sharp whole prototypical face to which many of
the images are mapped.

Figure 4. Face mapping. Three images of potential human faces
are shown along the top with the corresponding matched areas of
the epitome on the right from Fig. 3 below each one. The epit-
ome is ‘lit-up’ proportional to how well the patches in each of the
images matches to areas in the epitome.

would not match to the epitome in the same manner as
would a human face. To show where patches in an image
match in the epitome, the denominator in (5) can be used
as a transparency mask on the epitome as shown in Fig. 4.
The human face on the left causes a large contiguous area
of the epitome to be used frequently. The large forehead
of the subject also results in the high use of a bright patch
above the main face area of the epitome. The middle im-
age shows a digitally created image of a cyclops. The usage
of the bottom half of the prototypical face in the epitome
is normal, but only one side of the upper half of the face is
needed. Without modeling long-range correlations in epit-
ome mappings, we would expect that both eyes would be
used with equal probability, but because of these modeling
constraints, for the most part, only half of the face in the
epitome is used. Finally, an image of a dog is shown on
the right. As it does not resemble a human face, the patch
usage area in the epitome is quite deviant from that of a hu-
man face. Classification can be performed by computing
the likelihood under the epitome for each of these images
and the images shown have been ordered according to their
likelihood with the human face on the left with the highest
likelihood of the three.
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Figure 5. Changing the illumination of a face. Given a single test
image and a guiding training set, a synthesized sequence is gen-
erated that reflects a changing illumination of the single image by
iterating (10, 15, 16, 17, 14). The synthesis is plausible despite
the absence of the use of any geometry or domain knowledge. Not
only do the sharp shadows on the face move as expected, but the
projected shadow behind the head also moves in a plausible man-
ner. The training video of size 105x130 was used to synthesize 28
frames of size 100x125 from the target frame using patches of size
10x10x5 with 30 correlation links. The video sequence is available
at http://www.psi.toronto.edu/∼vincent/patchcorr.html.

5.2. Image illumination manipulation

It is often desired to change the illumination of a subject
in order for it to appear consistent with other elements of a
differently illuminated scene. Information from a training
sequence can be leveraged and used to interpolate changes
in illumination of an image. Fig. 5 shows an example. The
top row shows several frames of a video sequence exhibit-
ing a change in illumination. The single test image shown
in the middle is then extrapolated to mimic the illumination
change of the training sequence and the frames correspond-
ing to those in the training set are shown.

The illumination change is transferred onto the image
through patch matching between the image and the video
sequence and subsequent transferral of the illumination
change that the patches exhibit in the adjacent frames of
the training sequence via the 3D nature of the patches. The
result can then grow outwards in an iterative fashion. Be-
cause this is an extrapolation from a single image, it is diffi-
cult, especially in frames far from the original seed, to main-
tain the coherence of the patch matching. Using long-range
correlations between the patches is essential in maintaining
consistency in the results. The shadows in Fig. 5 move in a
plausible fashion. Patches of size 10x10x5 were used with
30 correlation links.

The second face illumination example shown in Fig. 6
shows a wider range of illumination change over a differ-
ent subject. The first row of results serves to demonstrate
the need for the long-range correlations as that is the result
without the correlation links, while the sequence in the bot-
tom row incorporate such links.

In the final illumination experiment shown in Fig. 7, an

Test Image

Without long-range correlations

With long-range correlations

Figure 6. The necessity for long-range correlations in patch match-
ing. The same experiment done in Fig. 5 is performed here with a
different test image. Synthesis results with and without long-range
patch correlations are shown. See the website for the video.

Training Set

Test Image

Figure 7. Changing the illumination of cloth. Given a single test
image of draped cloth and a guiding sequence, the illumination
of the single image is changed. Both the training set and the test
image were of size 150x150, from which 74 frames were extrapo-
lated using patches of size 15x15x5 with 50 correlation links. The
video result can be found on the website.

analogous operation was performed with a rippled piece of
clothing. The geometry of folded cloth is very complex
and would be difficult to model. Again, the illumination
change is transferred from a sample video sequence in or-
der to extrapolate the change of illumination angle of the
source lighting for a single image. The complexity of the
subject posed a difficult problem, but even then, the shad-
ows can be seen moving in a plausible manner.

5.3. Image walk-through

The same algorithm can be used in a variety of other
synthesis applications. In Fig. 8, walking through a given
image of a hallway is simulated given a training video. Note
that the image is not simply enlarged, as parallax effects are
apparent. As with the previous applications, no knowledge
of geometry or domain knowledge is given to the algorithm.
The patch correlations are sufficient to generate a plausible
synthesis.
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Test Image

Figure 8. Walking through an image. Given a single image of a
hallway, it is desired to mimic walking through the scene. In-
stead of just enlarging the image, it should appear as if the camera
is moving down the hallway. This effect is achieved by quilting
patches from a training sequence utilizing correlation links be-
tween patches to aid in matching. Patches of size 5x5x3 with
20 random correlation links were used to synthesize a plausible
movement of walls, lights, and fixtures given the single 180x120
seed frame. See the video on the website for the full effect.

6. Conclusion

We have introduced a powerful new patch-based model
that accounts for the varying geometric configurations of
object features to describe learnable probability density
functions of visual data. The representation power of our
model has been illustrated in a variety of tasks including
multiple object registration and detection, as well as ex-
treme missing data problems, such as relighting and walk-
ing through an image, where a single image frame is ex-
trapolated to a video sequence, the video results of which
can be found on the project webpage6. These tasks can
be achieved without explicitly incorporating domain knowl-
edge because our simple data-driven model captures suffi-
ciently short- and long-range correlations among the data
patches.
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Appendix

For a diagonal transformation Ai, with diagonal ele-
ments Aim

, the update equation is given by

Ãim
=

∑

j∈Ni

∑

Ti

∑

Tj
q(Ti)q(Tj)(T̄im

− T̄jm
)(S̄im

− S̄jm
)

∑

j∈Ni
(S̄im

− S̄jm
)2

.

(15)
The update equation to account for uncertainties in the cor-
relation links is given by

Φk =

∑

i,j|j∈Ni

∑

Ti

∑

Tj
q(Ti)q(Tj)D

2
ij

∑

i,j|j∈Ni
1

, (16)

6http://www.psi.toronto.edu/∼vincent/patchcorr.html

where
Dij = T̄i − T̄j − Ai(S̄i − S̄j).

Learning under the contrast model requires a reversal of the
scaling and addition used during matching:

µu =

∑

i

∑

T q(Ti = T )
∑

k[u = T (k)](zSi(k) − bi)/ai
∑

i

∑

T q(Ti = T )
∑

k[u = T (k)]
.

(17)
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